
ON THE NEWTON POLYGONS OF TWISTED L-FUNCTIONS
OF BINOMIALS

SHENXING ZHANG

Abstract. Let χ be an order c multiplicative character of a finite field and
f(x) = xd + λxe a binomial with (d, e) = 1. We study the twisted classical
and T -adic Newton polygons of f . When p > (d− e)(2d− 1), we give a lower
bound of Newton polygons and show that they coincide if p does not divide a
certain integral constant depending on p mod cd.

We conjecture that this condition holds if p is large enough with respect
to c, d by combining all known results and the conjecture given by Zhang-Niu.
As an example, we show that it holds for e = d− 1.
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1. Introduction

1.1. Background. Fix a rational prime p. For q = pa a power of p, denote by
Fq the finite field with q elements, Qq the unramified extension of Qp of degree
a and Zq its ring of integers. Let f(x) ∈ Fq[x] be a polynomial of degree d with
Teichmüller lifting f̂(x) ∈ Zq[x]. Let χ : F×

q → C×
p be a multiplicative character

and ω : F×
q → Z×

q the Teichmüller lifting. Then we can write χ = ω−u for some
0 ≤ u ≤ q − 2.

For a non-trivial additive character ψm : Zp → C×
p of order pm, define the twisted

L-function

Lu(s, f, ψm) = exp

( ∞∑
k=1

Sk,u(f, ψm)
sm

m

)
,
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where Sk,u(f, ψm) is the twisted exponential sum

Sk,u(f, ψm) =
∑

x∈F×
qk

ψm

(
TrQ

qk
/Qp

(
f̂(x̂)

))
ω−u

(
NmF

qk
/Fq

(x)
)
.

If p - d, then Lu(s, f, ψm) is a polynomial of degree pm−1d by Adolphson-Sperber
[AS87, AS91, AS93], Li [Li99], Liu-Wei [LW07] and Liu [Liu07].

We will use the twisted T -adic exponential sums developed by Liu-Wan [LW09]
and Liu [Liu02, Liu09]. Define the twisted T -adic L-function

Lu(s, f, T ) = exp

( ∞∑
k=1

Sk,u(f, T )
sk

k

)
∈ 1 + sZqJT KJsK,

where Sk,u(f, T ) is the twisted T -adic exponential sum

Sk,u(f, T ) =
∑

x∈F×
qk

(1 + T )
TrQ

qk
/Qp (f̂(x̂))ω−u

(
NmF

qk
/Fq

(x)
)
.

Then Lu(s, f, ψm) = Lu(s, f, πm) where πm = ψm(1)− 1.
Denote by

Cu(s, f, T ) =

∞∏
j=0

Lu(q
js, f, T ) ∈ 1 + sZqJT KJsK

the characteristic function, which is T -adic entire in s. Then
Lu(s, f, T ) = Cu(s, f, T )Cu(qs, f, T )

−1.

Since the π
a(p−1)
m -adic Newton polygon of Cu(s, f, πm) does not depend on the

choice of ψm, we denote it by NPu,m(f). Denote by NPu,T (f) the T a(p−1)-adic
Newton polygon of Cu(s, f, T ). As shown in [LW09] and [Liu07], NPu,m(f) lies
over the infinity u-twisted Hodge polygon H∞

[0,d],u, which has slopes

n

d
+

1

bd(p− 1)

b∑
k=1

uk, n ∈ N. (1.1)

If we write 0 ≤ s0 ≤ · · · ≤ spm−1d−1 ≤ 1 the q-adic slopes of Lu(s, f, πm), then the
q-adic slopes of Cu(s, f, πm) are

j + si, 0 ≤ i ≤ pm−1d− 1, j ∈ N.

That’s to say, the πa(p−1)
m -adic Newton polygon of Lu(s, f, πm) is the restriction of

NPu,m(f) on [0, pm−1d], and it determines NPu,m(f).
The prime p is required large enough in the following results. When χ = ω−u is

trivial, in [Zhu14] and [LLN09], they gave a lower bound of the Newton polygons.
They defined a polynomial on the coefficients of f , called Hasse polynomial. If the
Hasse polynomial is nonzero, then the Newton polygons coincide this lower bound.

Assume that f(x) = xd + λxe is a binomial. Since the exponential sums can be
transformed to the twisted case when d and e are not coprime, we assume (d, e) = 1
in this paper. When u = 0, we list the known cases here.

• p ≡ 1 mod d, it’s well-known that the Newton polygons coincides the Hodge
polygon.

• e = 1, see [Yan03, §1, Theorem], [Zhu14, Theorem 1.1] and [OY16, Theo-
rem 1.1].
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• e = d− 1, p ≡ −1 mod d, see [OZ16].
• e = 2, p ≡ 2 mod d, see [ZN21].

For arbitrary u, Liu-Niu [LN11] obtained the Newton polygons when e = 1. Zhang-
Niu [ZN21] also give a conjectural description of the Newton polygons when p ≡
e mod d.

1.2. Notations. We list the notations we will use.
• i, j, v, w, k, ℓ, n indices.
• f(x) = xd + λxe ∈ Fq[x] a binomial with d > e ≥ 1, (d, e) = 1, λ 6= 0.
• ω−u : F×

q → C×
p , where ω is the Teichmüller lifting and 0 ≤ u ≤ q − 2.

• H∞
[0,d],u, the infinity u-twisted Hodge polygon with slopes in (1.1).

• c = q−1
(q−1,u) the order of ω−u, then u = (q−1)µ

c for some (µ, c) = 1.
• Pu,e,d a polygon with slopes w(i), defined in (1.2).
• b the least positive integer such that pbu ≡ u mod (q − 1) (equivalently,
pb ≡ 1 mod c).

• 0 ≤ ui ≤ p− 1 such that u = u0 + u1p+ · · ·+ ua−1p
a−1, ui = ub+i.

• x the minimal non-negative residue of x modulo d.
• δP takes value 1 if P happens; 0 if P does not happen.
• In = {1, . . . , n} , I∗n = {0, 1, . . . , n}.
• Sn (resp. S∗

n) the set of permutations of In (resp. I∗n).
• Ct,n the minimum of

∑n
i=0 e

−1(pi− τ(i) + t) for τ ∈ S∗
n and S◦

t,n the set
of τ ∈ S∗

n such that the summation reaches minimal. Set Ct,−1 = 0 for
convention.

• Ri,α = e−1(pi+ α), ri,α = e−1(t− α− i), see Proposition 2.1. We will
drop the subscript α if there is no confusion.

• Ct,n,α the maximal size of
{
i ∈ I∗n | Ri,α + rτ(i),α ≥ d

}
for τ ∈ S∗

n. We will
drop the subscript α if there is no confusion.

• yτt,i = e−1(pi− τ(i) + t), xτt,i = d−1(pi−τ(i)+ t−eyτt,i) the unique solution
of dx+ ey = pi− τ(i) + t with 0 ≤ y ≤ d− 1.

• hn,k, hu,e,d the Hasse numbers defined in (1.3).
• p the minimal non-negative residue of p modulo cd.
• Hµ,c,p,e,d ∈ Z a constant defined in (3.1).
• E(X) the p-adic Artin-Hasse series, see (2.1).
• π a T -adic uniformizer of QpJT K given by E(π) = 1 + T , with a fixed
d(q − 1)-th root π

1
d(q−1) .

• Ef (X), see (2.2).
• Mu = u

q−1 + N.
• Lu a Banach space, see (2.3).
• Bu a subspace of Lu, see (2.4).
• B = Bu ⊕ Bpu ⊕ · · · ⊕ Bpb−1u.
• ψ : Lu → Lp−1u defined as ψ

(∑
v∈Mu

bvX
v
)
=
∑

v∈Mp−1u
bpvX

v.
• σ ∈ Gal(Qq/Qp) the Frobenius, which acts on Lu via the coefficients.
• Ψ = σ−1 ◦ ψ ◦ Ef : Bu → Bp−1u the Dwork’s T -adic semi-linear operator.
• cn the coefficients of det(1−Ψs | B), see (2.6).
• sk ≡ pku mod q − 1 with 0 ≤ sk ≤ q − 2.
• Γ =

(
γ(v, sk

q−1+i),(w,
sℓ

q−1+j)

)
the matrix coefficient of Ψ on B, see (2.7).

• Γ(k) the sub-matrix of Γ defined in (2.7).
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• A(k) = A ∩ Γ(k) the sub-matrix of a principal minor A of Γ.
• An the set of all principal minor A of order bn, such that every A(k) has

order n.
• ϕ(n) ∈ N ∪ {+∞} the minimal x+ y where dx+ ey = n, x, y ∈ N.
• γ( sk

q−1+i,
sℓ

q−1+j), see (2.9).
• (x)[n] := x(x− 1) · · · (x− n+ 1), (x)[0] := 1 the falling factorial.

1.3. Main results. In this paper, we give an explicit lower bound of Newton
polygons of twisted L-functions of binomial f(x) = xd + λxe. We reduce the Hasse
polynomial to a certain integer (3.1). Then p > (d− e)(2d− 1) does not divide this
constant, if and only if this lower bound coincides the Newton polygons. Finally,
we show that this condition holds for e = d− 1.

Denote by Pu,e,d the polygon such that

Pu,e,d(n) =
n(n− 1)

2d
+

1

bd(p− 1)

b∑
k=1

(
nuk + (d− e)Cuk,n−1

)
, n ∈ N. (1.2)

Denote by w(n) = Pu,e,d(n+ 1)− Pu,e,d(n). Then

w(n) =
n

d
+

1

bd(p− 1)

b∑
k=1

(
uk + (d− e)(Cuk,n − Cuk,n−1)

)
.

This polygon lies above the Hodge polygon H∞
[0,d],u with same points at dZ, and

w(n + d) = 1 + w(n). Moreover, we have w(n) ≤ w(n + 1) if p > (d − e)(2d − 1).
See Proposition 2.1.
Theorem 1.1. Assume that p > (d− e)(2d− 1). Then NPu,T (f) lies above Pu,e,d.
As a corollary, NPu,m(f) lies above Pu,e,d.

Define

hn,k :=
∑

τ∈S◦
uk,n

sgn(τ)

n∏
i=0

1

xτuk,i
!yτuk,i

!
, hu,e,d :=

d−2∏
n=0

b∏
k=1

hn,k. (1.3)

Theorem 1.2. Assume that p > (d− e)(2d− 1). Then
NPu,m(f) = NPu,T (f) = Pu,e,d (1.4)

holds if and only if hu,e,d ∈ Z×
p , if and only if p - Hµ,c,p,e,d.

Here Hµ,c,p,e,d ∈ Z is a constant defined in (3.1) and p is the minimal positive
residue of p modulo cd. Thus we have the following corollary.
Corollary 1.3. Assume that (1.4) holds for

a,m, p, f(x) = xd + λxe ∈ Fpa [x], u =
(pa − 1)µ

c
,

where b | a, λ 6= 0 and p > (d− e)(2d− 1). Then
(1) Hµ,c,p,e,d 6= 0.
(2) For any

a′,m′, p′, f ′(x) = xd + λ′xe ∈ Fp′a′ [x], u′ =
(p′

a′
− 1)µ

c
,

where b | a, λ 6= 0 and p′ > (d− e)(2d− 1), we have (1.4) if p′ ≡ p mod cd
and p′ > Hµ,c,p,e,d.
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(3) As p′ ≡ p mod cd tends to infinity, the polygons NPu,m(f) and NPu,T (f)
tend to H∞

[0,d],u, which only depends on µ, c,p, d.

The following result extends [OZ16], as they considered the untwisted case with
an additional condition p ≡ −1 mod d.

Theorem 1.4. Assume that e = d− 1. We have NPu,m(f) = NPu,T (f) = Pu,e,d if
p > c(d2 − d+ 1).

We give the following conjecture, which generalizes the conjecture in [ZN21].
Note that hu,e,d may be zero since S◦

uk,n
may be empty, so we require that p is

large with respect to c, as in Corollary 1.3 and Theorem 1.4.

Conjecture 1.5. If p is large enough with respect to c, d, then NPu,m(f) =
NPu,T (f) = Pu,e,d.

2. The lower bound

2.1. The property of the lower bound polygon. For any integer t, we denote

Ct,n = min
τ∈S∗

n

n∑
i=0

e−1(pi− τ(i) + t).

We set Ct,−1 = 0 for convention. For any integer α, we denote

Ri,α = e−1(pi+ α), ri,α = e−1(t− α− i)

and
Ct,n,α = max#

{
i ∈ I∗n | Ri,α + rτ(i),α ≥ d

}
.

Proposition 2.1. (1) For any α, we have

Ct,n =

n∑
i=0

(Ri,α + ri,α)− dCt,n,α.

(2) For any α, we have
Ct,n+d,α = d− 1 +Ct,n,α, Ct,n+d = Ct,n.

Thus w(n+ d) = 1 + w(n) and Pu,e,d(dn) = H∞
[0,d],u(dn).

(3) If p > (d− e)(2d− 1), we have w(n) ≤ w(n+ 1).

Proof. We omit the subscript α in this proof for convention.
(1) It follows from

e−1(pi− τ(i) + t) = Ri + rτ(i) − dδRi+rτ(i)≥d.

(2) We have
Ct,n = max

τ∈S∗
n

#
{
i ∈ I∗n | Ri ≥ d− rτ(i)

}
.

Note that {
Ri | i ∈ I∗n+d

}
= {Ri | i ∈ I∗n} ∪ {0, 1, . . . , d− 1} ,{

d− ri | i ∈ I∗n+d

}
= {d− ri | i ∈ I∗n} ∪ {d, 1, . . . , d− 1} .

We may drop the 0 and d since they do not affect the size. Apple Lemma 2.2 (d−1)
times, where a0 = b0 = j in j-th time, then we get Ct,n+d = d− 1 +Ct,n.
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Since
n+d∑

i=n+1

(Ri + ri) = 2

d−1∑
j=0

j = d(d− 1),

we have Ct,n+d = Ct,n. Thus w(n+ d) = 1 + w(n).
Note that Ct,n+d = Ct,n also holds for n = −1. Hence Ct,dn−1 = 0 and

Pu,e,d(dn) = H∞
[0,d],u(dn).

(3) Denote by δ = δRn+rn≥d. For any τ ∈ S∗
n, write i = τ(n), j = τ−1(n) and

τ1 = (ni)τ . Then τ1(n) = n, τ1(j) = i and

δ +#
{
i ∈ I∗n−1 | Ri + rτ1(i) ≥ d

}
−#

{
i ∈ I∗n | Ri + rτ(i) ≥ d

}
=δ + δRj+ri≥d − δRj+rn≥d − δRn+ri≥d.

If this is −2, then 2d > Rn+rn+Rj+ri ≥ 2d, that’s impossible. Thus δ+Ct,n−1−
Ct,n ≥ −1.

Any σ ∈ S∗
n−1 can be viewed as an element σ1 ∈ S∗

n fixing n. Thus

δ +#
{
i ∈ I∗n−1 | Ri + rσ(i) ≥ d

}
= #

{
i ∈ I∗n | Ri + rσ1(i) ≥ d

}
.

and then δ +Ct,n−1 ≤ Ct,n.
Now

Ct,n − Ct,n−1

=Rn + rn − d(Ct,n −Ct,n−1)

=e−1(pn− n+ t) + d(δ +Ct,n−1 −Ct,n)

lies in [−d, d− 1]. Therefore,

w(n)− w(n− 1)

=
1

d
+

d− e

bd(p− 1)

b∑
k=1

(Cuk,n − 2Cuk,n−1 + Cuk,n−2)

≥1

d
+

(d− e)(1− 2d)

d(p− 1)
≥ 0

since p > (d− e)(2d− 1). �

Lemma 2.2. Let A = {a0, . . . , am} and B = {b0, . . . , bm} be two multi-sets of
integers. Assume that a0 ≥ b0 and for any i > 0, bi > a0 or bi ≤ b0. Then

max
τ∈S∗

m

#
{
i ∈ I∗m | ai ≥ bτ(i)

}
= 1 + max

σ∈Sm

#
{
i ∈ Im | ai ≥ bσ(i)

}
.

Proof. Every permutation in Sn can be viewed as a permutation in S∗
n fixing 0, thus

“≥” holds trivially. Write i = τ(0), j = τ−1(0) and τ1 = (0i)τ . Then τ1(0) = 0 and
τ1(j) = i. Thus

#
{
i ∈ I∗m | ai ≥ bτ1(i)

}
−#

{
i ∈ I∗m | ai ≥ bτ(i)

}
=1 + δaj≥bi − δaj≥b0 − δa0≥bi .

If this is negative, then a0 ≥ bi > aj ≥ b0, which is impossible. Thus “≤” holds. �
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2.2. The twisted T -adic Dwork’s trace formula. This part is almost the same
with [LN11, �2,3]. Denote by

E(X) = exp

( ∞∑
i=0

p−iXpi

)
=

∞∑
n=0

λnX
n ∈ ZpJXK (2.1)

the p-adic Artin-Hasse series. Then λn = 1/n! if n < p. Denote by

Ef (X) = E(πXd)E(πλ̂Xe) =

∞∑
n=0

γnX
n. (2.2)

Then
γk =

∑
πx+yλxλyλ̂

y,

where (x, y) runs through non-negative solutions of dx+ ey = k.
Denote by Mu = u

q−1 + N. Define

Lu =

{ ∑
v∈Mu

bvπ
v
dXv

∣∣∣∣∣ bv ∈ ZqJπ 1
d(q−1) K} (2.3)

and

Bu =

{ ∑
v∈Mu

bvπ
v
dXv ∈ Lu

∣∣∣∣∣ ordπbv → +∞ as v → +∞

}
. (2.4)

Define a map
ψ : Lu −→ Lp−1u∑

v∈Mu

bvX
v 7−→

∑
v∈Mp−1u

bpvX
v. (2.5)

The power series Ef defines a map on Bu via multiplication. Let σ ∈ Gal(Qq/Qp)
be the Frobenius, which acts on Lu via the coefficients. Then the Dwork’s T -adic
semi-linear operator Ψ = σ−1 ◦ ψ ◦ Ef sends Bu to Bp−1u. Hence Ψ acts on

B :=

b−1⊕
i=0

Bpiu.

We have a linear map

Ψa = ψa ◦
a−1∏
i=0

Eσi

f (Xpi

)

on B over ZqJπ 1
d(q−1) K. Since Ψ is completely continuous in the sense of [Ser62], the

following determinants are well-defined.

Theorem 2.3. We have
Cu(s, f, T ) = det

(
1−Ψas

∣∣∣ Bu/ZqJπ 1
d(q−1) K) .

Thus the T -adic Newton polygon of Cu(s, f, T ) is the lower convex closure of(
n,

1

b
ordT (cabn)

)
, n ∈ N,

where

det
(
1−Ψs

∣∣∣ B/ZpJπ 1
d(q−1) K) =

∞∑
i=0

(−1)ncns
n. (2.6)
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Proof. See [LW09, Theorem 4.8], [Liu07], [LLN09, Theorems 2.1, 2.2] and [LN11,
Theorems 2.1, 5.3]. �

Write sk ≡ pku mod q − 1 with 0 ≤ sk ≤ q−2. Then sb−k = s−k = uk+uk+1p+
· · ·+uk+a−1p

a−1. Let ξ1, . . . , ξa be a normal basis of Qq over Qp. The space B has
a basis {

ξv(π
1
dX)

sk
q−1+i

}
(i,v,k)∈N×Ia×Ib

over ZpJπ 1
d(q−1) K. Let Γ =

(
γ(v, sk

q−1+i),(w,
sℓ

q−1+j)

)
N×Ia×Ib

be the matrix of Ψ on B
with respect to this basis. Then

Γ =


0 Γ(1) 0 · · · 0
0 0 Γ(2) · · · 0
...

...
... . . . ...

0 0 0 · · · Γ(b−1)

Γ(b) 0 0 · · · 0

 , (2.7)

where
Γ(k) =

(
γ
(v,

sk−1
q−1 +i),(w,

sk
q−1+j)

)
N×Ia

.

Hence we have

det
(
1−Ψs

∣∣∣ B/ZpJπ 1
d(q−1) K) = det(1− Γs) =

∞∑
n=0

(−1)bncbns
bn

with cn =
∑

det(A), where A runs through all principal minors of order n, see
[LZ05]. Denote by A(k) = A ∩ Γ(k) as a minor of Γ(k). If A has order bn, but the
order of some A(k) is not n, then det(A) = 0. Denote by An the set of all principal
minors of order bn, such that every A(k) has order n. Then

cbn =
∑

A∈An

det(A) = (−1)n(b−1)
∑

A∈An

b∏
k=1

det(A(k)). (2.8)

Theorem 2.4. If p > (d− e)(2d− 1), then
ordπ(det(A)) ≥ ab(p− 1)Pu,e,d(n+ 1)

for any A ∈ Aa(n+1).

Proof of Theorem 1.1. By Theorem 2.4 and (2.8), we have
ordπ(cabn) ≥ ab(p− 1)Pu,e,d(n).

Thus NPu,T (f) lies above Pu,e,d by Theorem 2.3. Note that NPu,m(f) ≥ NPu,T (f)
by definition. Therefore, NPu,m(f) also lies above Pu,e,d. �
2.3. Estimation on cn. Denote by

ϕ(n) = min {x+ y | dx+ ey = n, x, y ∈ N} ∈ N ∪ {+∞} .
Here the minimal element in ∅ is regarded as +∞. For i, j ∈ N, k ∈ Ib, define

γ
(
sk−1
q−1 +i,

sk
q−1+j)

= π
sk−sk−1
d(q−1)

+ j−i
d γpi−j+u−k

. (2.9)

Then
ξσ

−1

w γσ
−1

(
sk−1
q−1 +i,

sk
q−1+j)

=
∑
u∈Ia

γ
(v,

sk−1
q−1 +i),(w,

sk
q−1+j)

ξv
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and

ordπ

(
γ
(v,

sk−1
q−1 +i),(w,

sk
q−1+j)

)
≥ ordπ

(
γ
(
sk−1
q−1 +i,

sk
q−1+j)

)
=
sk − sk−1

d(q − 1)
+
j − i

d
+ ϕ(pi− j + u−k).

(2.10)

Lemma 2.5. For any τ ∈ S∗
n and integer t,

n∑
i=0

ϕ(pi− τ(i) + t) ≥ d−1

(
(p− 1)n(n+ 1)

2
+ (n+ 1)t+ (d− e)Ct,n

)
.

Proof. We may assume that pi− τ(i)+ t ∈ dN+ eN for each i. One can easily show
that

ϕ(k) = d−1
(
k + (d− e)e−1k

)
and the minimum arrives at

(x, y) =
(
d−1(k − ee−1k), e−1k

)
.

Thus
ϕ(pi− j + t) = d−1

(
pi− j + t+ (d− e)e−1(pi− j + t)

)
. (2.11)

The result then follows easily. �

Lemma 2.6. Assume ai = ai+m and bi = bi+m for any i ∈ Imd. Then
max
τ∈Smd

#
{
i ∈ Imd | ai ≥ bτ(i)

}
= d max

σ∈Sm

#
{
i ∈ Im | ai ≥ bσ(i)

}
.

Proof. We may assume that there exists some k such that: ak ≥ bk and for any
i 6= k, bi > ak or bi ≤ bk. Otherwise both sides should be zero. We may assume
that k = m for simplicity. Apply Lemma 2.2 d times, where a0 = ami, b0 = bmi in
i-th time, we get

max
τ ′∈Smd

#
{
i ∈ Imd | ai ≥ bτ ′(i)

}
= d+max

τ
#
{
i ∈ Imd −mZ | ai ≥ bτ(i)

}
,

where τ runs through permutations on Imd −mZ. Since
max
σ′∈Sm

#
{
i ∈ Im | ai ≥ bσ′(i)

}
= 1 +max

σ
#
{
i ∈ Im − {m} | ai ≥ bσ(i)

}
by Lemma 2.2, where σ runs through permutations on Im − {m}, the result is
reduced to

max
τ

#
{
i ∈ Imd −mZ | ai ≥ bτ(i)

}
= dmax

σ
#
{
i ∈ Im − {m} | ai ≥ bσ(i)

}
.

Denote by A(m−1)i+j = ami+j and B(m−1)i+j = bmi+j , 1 ≤ j ≤ m − 1. Then
Ai = Ai+m−1, Bi = Bi+m−1 and the equation above becomes

max
τ∈S(m−1)d

#
{
i ∈ I(m−1)d | Ai ≥ Bτ(i)

}
= d max

σ∈Sm−1

#
{
i ∈ Im−1 | Ai ≥ Bσ(i)

}
.

The result then follows by induction on m. �

Lemma 2.7. For any i ∈ N× Ia, we write i = (i′, i′′). Then for any permutation
τ on I∗n × Ia,∑

i∈I∗
n×Ia

ϕ(pi′ − τ(i)′ + t) ≥ a

d

(
(p− 1)n(n+ 1)

2
+ (n+ 1)t+ (d− e)Ct,n

)
.
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Proof. By Eq. (2.11), we only need to show that

min
τ

∑
i∈I∗

n×Ia

e−1(pi− τ(i) + t) = aCt,n.

By Proposition 2.1, it can be reduced to
max

τ
#
{
i ∈ I∗n × Ia | Ri′,α + rτ(i)′,α ≥ d

}
= aCt,n,α.

This follows from Lemma 2.6. �

Proof of Theorem 2.4. This proof is similar to [ZN21, Theorem 3.2]. Denote by R
the set of indices of A and

R(k) × {k} = R∩ (N× Ia × {k}), R(0) = R(b).

Then #R(k) = a(n+ 1),

A(k) =
(
γ
(v,

sk−1
q−1 +i),(w,

sk
q−1+j)

)
(i,v)∈R(k−1),(j,w)∈R(k)

and

det(A) =

b∏
k=1

det(A(k)) =
∑
τ

sgn(τ)
∏
i∈R

γi,τ(i),

where τ runs through permutations of R such that τ(R(k−1)) = R(k). Here,

ordπ

(∏
i∈R

γi,τ(i)

)
≥ Sτ

R

by (2.10), where

Sτ
R =

b∑
k=1

∑
i∈R(k−1)

(
τ(i)′ − i′

d
+ ϕ

(
pi′ − τ(i)′ + u−k

))

≥ d−1
b∑

k=1

∑
i∈R(k−1)

(
(p− 1)i′ + (d− e)e−1(pi′ − τ(i)′ + u−k)

)
by Eq. (2.11). By Lemma 2.7,

Sσ
N ≥ ab(p− 1)Pu,e,d(n+ 1),

where N = I∗n × Ia × Ib. By (2.8), we only need to show that for any permutation
τ of R 6= N such that τ(R(k−1)) = R(k), there is a permutation σ of N such that
σ(N (k−1)) = N (k) and Sτ

R ≥ Sσ
N .

Assume #(R\N ) = m. Write T = (N\R) ∪ τ−1(R\N ), then #T = 2m and
N\T = N ∩ τ−1(N ∩R). Thus τ(N\T ) ⊂ N . Note that for i ∈ R\N , j ∈ N\R,
i′ ≥ n+1 ≥ j′+1. We can choose a permutation σ of N such that σ(N (k−1)) = N (k)

and σ = τ on N\T . Then
d(Sτ

R − Sσ
N )

≥

 ∑
i∈R\N

−
∑

i∈N\R

 (p− 1)i′ −
b∑

k=1

∑
i∈T∩N (k)

(d− e)e−1(pi′ − τ(i)′ + u−k)

≥m(p− 1)− 2m(d− e)(d− 1) > 0.

The result then follows. �
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3. The Newton polygons

Lemma 3.1. The Newton polygon NPm(f) lies over NPT (f). Moreover, if the
equality holds for one m, then it holds for all m.

Proof. See [LW09, Theorem 2.3] and [LN11, Theorem 5.5]. �

Proof of Theorem 1.2. (1) Since w(d+ i) = 1 + w(i), both of NPu,m(f) and Pu,e,d

across points
(
di,H∞

[0,d],u(di)
)
, we only need to show that NPu,m(f) = Pu,e,d on

[1, d− 1]. By Lemma 3.1, we may assume that m = 1.
Assume 0 ≤ n ≤ d− 2. Recall that S◦

t,n is the set of τ ∈ S∗
n such that

#
{
i ∈ I∗n | Ri,α + rτ(i),α ≥ d

}
= Ct,n,α

and every pi−τ(i)+t ∈ dN+eN. It’s equivalently to say, the equality in Lemma 2.5
holds. Recall that

yτt,i = e−1(pi− τ(i) + t), xτt,i = ϕ(pi− τ(i) + t)− yτt,i.

Denote by m the right hand side in Lemma 2.5. Then we have

det(γpi−j+t)i,j∈I∗
n
≡ πm

∑
τ∈S◦

t,n

sgn(τ)

n∏
i=0

λxτ
t,i
λyτ

t,i
λ̂y

τ
t,i

≡πmλ̂vt,n
∑

τ∈S◦
t,n

sgn(τ)

n∏
i=0

1

xτt,i!y
τ
t,i!

mod πm+1,

where

vt,n :=

n∑
i=0

yτt,i =

n∑
i=1

(Ri,α + ri,α)− dCt,n,α

is independent on τ ∈ S◦
n.

Recall that Sτ
R > Sσ

N in the proof of Theorem 2.4. Then modulo πab(p−1)Pu,e,d(n+1)+1,
we have

cab(n+1) =
∑

A∈Aa(n+1)

det(A) ≡ det
(
(γi,j)i,j∈N

)
= ±Nm

(
b∏

k=1

det
(
γ
(
sk−1
q−1 +i,

sk
q−1+j)

)
i,j∈I∗

n

)

= ±Nm

(
b∏

k=1

det(γpi−j+uk
)i,j∈I∗

n

)

≡ ±πab(p−1)Pu,e,d(n+1)Nm

(
b∏

k=1

λ̂vuk,nhn,k

)
by (2.8), (2.9), [LLN09, Lemma 4.4] and [LN11, Lemma 3.5]. Hence we get the first
assertion by replacing π by π1.

(2) Denote by tk the minimal non-negative residue of p−kµ modulo c. Then
uk = tk+1p−tk

c . Write p the minimal positive residue of p modulo cd and p = cdℓ+p.
Denote by

uk =
tk+1p− tk

c
, yτ

uk,i
= −e−1(pi− τ(i) + uk), x

τ
uk,i

=
pi− τ(i) + uk − eyτ

uk,i

d
.
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Then
uk = tk+1dℓ+ uk, y

τ
uk,i

= yτ
uk,i

, xτuk,i
= (ci+ tk+1)ℓ+ xτ

uk,i
.

It’s easy to see that xτ
uk,i

< p and xτuk,i
< p. Since

xτ
uk,i

≥ −n− e(d− 1)

d
> −e− 1,

we have xτ
uk,i

≥ −e. Note that yτt,i does not depend on ℓ. Denote by

Hµ,c,p,e,d =

b∏
k=1

d−2∏
n=0

∑
τ∈S◦

n

sgn(τ)

n∏
i=1

(d− 1)[
d−1−yτ

uk,i

] × (cd)p−1−xτ
uk,i

×
(
−p(ci+ tk+1)

cd
+ p− 1

)
[
p−1−xτ

uk,i

] ∈ Z.
(3.1)

Then
Hµ,c,p,e,d

≡
b∏

k=1

d−2∏
n=0

∑
τ∈S◦

n

sgn(τ)

n∏
i=1

(d− 1)[
d−1−yτ

uk,i

] × (cd)p−1−xτ
uk,i

× ((ci+ tk+1)ℓ+ p− 1)[
p−1−xτ

uk,i

]

=hu,e,d

b∏
k=1

d−2∏
n=0

n∏
i=1

(d− 1)!(cd)p−1−xτ
uk,i
(
(ci+ tk+1)ℓ+ p− 1

)
! mod p

Note that d− 1, (ci+ tk+1)ℓ+ p− 1 < p. Thus
NPu,m(f) = NPu,T (f) = Pu,e,d ⇐⇒ p - Hµ,c,p,e,d

for p > (d− e)(2d− 1). �

Proof of Corollary 1.3. Since p - Hµ,c,p,e,d, we have Hµ,c,p,e,d 6= 0. Hence p′ -
Hµ,c,p,e,d for any p′ > Hµ,c,p,e,d. Note that

b∑
k=1

uk =
p− 1

c

b∑
k=1

tk,

thus H∞
[0,d],u only depends on µ, c,p, d. Since

Pu,e,d(n)−H∞
[0,d],u(n) =

d− e

bd(p− 1)

b∑
k=1

Cuk,n−1 ≤ (d− e)n(d− 1)

d(p− 1)

tends to zero as p tends to infinity, the result then follows. �

Example 3.2. Assume that p ≡ 1 mod d and d | uk for all k. Write p = dk + 1
and t = uk. Then

Ri := Ri,0 = e−1i, Ri := ri,0 = −e−1i, Ct,n = n, S◦
n = {1}

and x1t,i =
(p−1)i+t

d , y1t,i = 0. Since

hn,k =

(
n∏

i=0

(
(p− 1)i+ uk

d

)
!

)−1

∈ Z×
p ,

we obtain that the Newton polygons coincide H∞
[0,d],u.
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4. The case e = d− 1

If pi − τ(i) + t /∈ dN + eN for some i, then xτt,i < 0. Set 1/k! = 0 for negative
integer k. Then

hn,k =
∑

τ∈S•
uk,n

sgn(τ)

n∏
i=1

1

xτuk,i
!yτuk,i

!
,

where S•
t,n the set of τ ∈ S∗

n such that the size of
{
i ∈ I∗n | Ri,α + rτ(i),α ≥ d

}
is

Ct,n,α.

Lemma 4.1. Denote by c(j) = (−αj + β)[j].
(1) If ui = αvi + β for any i, then the matrix(

(ui)[j] · (vi + n)[n−j]

)
0≤j≤n

=⇒
(
c(j)vn−j

i

)
0≤j≤n

(4.1)

by third elementary column transformations.
(2) If ui ≡ αvi +β mod p for any i, then (4.1) holds by third elementary column

transformations, modulo p.

Proof. (1) Write

(αx+ β)[j] =

j∑
t=0

ct(j) · (x+ j)[t] ,

then c0(j) = c(j) and
(ui)[j] · (vi + n)[n−j]

=

j∑
t=0

ct(j) · (vi + j)[t] · (vi + n)[n−j]

=

j∑
t=0

ct(j) · (vi + n)[n−j+t] .

(4.2)

Hence by third elementary column transformations,(
(ui)[j] · (vi + n)[n−j]

)
=⇒

(
c(j) · (vi + n)[n−j]

)
=⇒

(
c(j)vn−j

i

)
.

(2) In this case, (4.2) holds modulo p. The result then follows easily. �

Proof of Theorem 1.4. Since p > c(d2−d+1), we have p > (d− e)(2d−1). Denote
by t = uk and tk the minimal non-negative residue of p−kµ modulo c. Then
t = tk+1p−tk

c . If c > 1, then t ≥ p−(c−1)
c ≥ d(d− 1) and t < (c−1)p

c ≤ p− d(d− 1).
If c = 1, then t = 0.

Assume that 0 ≤ n ≤ d− 2. Denote by

Ri = Ri,t = e−1(pi+ t) = −pi− t = −pi− t+ ℓid

and
ri = ri,t = −e−1i = i.

Then
{d− ri | i ∈ I∗n} = {d, d− 1, . . . , d− n} .

We have
Ct,n = # {i ∈ I∗n | Ri ≥ d− n}
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and
S•
n = {τ ∈ S∗

n | Ri + τ(i) ≥ d for Ri ≥ d− n} .
For Ri < d− n, we have Ri + τ(i) < d and

xτt,i = pi+ t− ℓie− τ(i), yτt,i = −pi− t+ ℓid+ τ(i);

for Ri ≥ d− n, we have Ri + τ(i) ≥ d and
xτt,i = pi+ t− ℓie+ e− τ(i), yτt,i = −pi− t+ ℓid− d+ τ(i).

If τ /∈ S•
n, there is i such that yτt,i < 0 or xτt,i < 0. Denote by

(ui, vi) =

{
(pi+ t− ℓie,−pi− t+ ℓid), if Ri < d− n;

(pi+ t− ℓie+ e,−pi− t+ ℓid− d), if Ri ≥ d− n.

Then
hn,k = det

(
1

(ui − j)!(vi + j)!

)
.

Apply Lemma 4.1(2) with α = −d−1e, β = t(1− d−1e), we obtain that

hn,k ·
n∏

i=0

ui! · (vi + n)!

≡
n∏

j=0

(
d−1e(j − t) + t

)
[j]

· det
(
vn−j
i

)
≡

n∏
j=0

(
d−1e(j − t) + t

)
[j]

·
∏

0≤i<j≤n

(vi − vj) mod p.

If Ri < d − n, then vi = Ri ≥ 0; if Ri ≥ d − n, then vi + n = Ri − d + n ≥ 0.
Hence 0 ≤ vi + n ≤ d − 1 are different and (vi + n)!, (vi − vj) ∈ Z×

p if i 6= j. Note
that ui = ℓi − Ri or ℓi − Ri + e. When c = 1, we have t = R0 = ℓ0, u0 = 0 or e,
and for i ≥ 1,

ui ≥ ℓi −Ri ≥
pi+ t

d
− d+ 1 ≥ p

d
− d+ 1 ≥ 0.

When c > 1, we have

ui ≥ ℓi −Ri ≥
pi+ t

d
− d+ 1 ≥ t

d
− d+ 1 ≥ 0.

Meanwhile,

ui ≤ ℓi −Ri + e =
pi+ t− (d− 1)Ri + de

d
≤ p(d− 2) + t+ de

d
< p,

hence ui! ∈ Z×
p .

For any 0 ≤ k ≤ j − 1, we have
0 < e(j − t) + d(t− k) = d(j − k) + t− j ≤ (d− 1)j + p− d(d− 1) < p,

which means that p |
(
d−1e(j − t) + t

)
[j]

. Hence hn,k ∈ Z×
p . �
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